Combining Screen-Space Ambient
Occlusion and
Cartoon Rendering on Graphics Hardware

Dan Nottingham and Brett Lajzer



Overview

« Motivation

« Ambient Occlusion and SSAO
« Cartoon Rendering

« Hardware Implementation

e Demo

e Future work



Motivation

 NPR techniques like cel shading look cool
e But, detalils are often lost, and scene looks flat

« SSAO helps bring out features, especially
creases and object boundaries

« Hardware implementation allows for real-
time/interactive frame rates for dynamic scenes,
such as in games



Ambient Occlusion

» Approximation to global illumination

« Point on a surface receives less ambient light if there
are occluding objects nearby in its hemisphere

« Usually calculated with Monte-Carlo ray casting

1 ;
Apy=— | Vu(N - -w)dw

S0

http://en.wikipedia.org/wiki/Ambient_occlusion




Screen-Space Ambient Occlusion

» Approximate AO using the depth buffer
» For target pixel, determine occlusion by:

- Taking random sample points in hemisphere
- Comparing depth of sample point to depth buffer

- If sample is behind stored depth and not too far
behind, point is occluded

« Can be implemented in hardware



Screen-Space Ambient Occlusion

From “Finding Next Gen — CryEngine 2”
by Martin Mittring, Crytek GmbH




Cartoon Rendering

* Draw outlines based
on discontinuities in
depth and camera-
space normals

* Threshold lighting
Intensities to discreet
values

From “Non-Photorealistic Rendering with Pixel and
Vertex Shaders”, Drew Card and Jason L. Mitchell, ATI
Research




Hardware Implementation

e Used OpenGL and GLSL to implement shaders
* Most work done in fragment (pixel) shaders

e |ntermediate results rendered to textures
through frame buffer objects

« For certain steps, render a single quad filling
the whole screen, textured with results of
previous steps



Implementation — Rendering Passes
« Camera-space depth and normals
« SSAO

e Blur SSAQ, repeat 10 times
 Lighting, color, and cel shading

e Qutlines




SSAOQO Implementation

« Shader is given 8 sample points on a sphere
and random vector texture

« Randomize sample points by reflecting around
vector at pixel

* Increase occlusion value if pixel depth is behind
depth buffer at sample

« Throw out occlusion values less than 5, map
remainders from 0 to 1 quadratically



SSAOQO Implementation

Loss of information due to depth

buffer _\/_m
- Bump is equivalent to object offset Cb -

from surface

Crysis implementation does not O O

occlude if depth difference is too large Scene from top-down view

— Leads to under-occlusion in
second-from-right case

Our implementation ignores how far - r
occluder is from surface in z

'

— Causes over-occlusion in
rightmost case L/

Same as seen from depth-buffer




SSAOQO Implementation

« Simplest method for generating sample points around the pix to
take samples within the sphere centered at it (left)

« Sampling hemisphere in direction of normal is more correct, prevents
self-occlusion (center)

« We generate points within a sphere, but essentially flatten the points
on to a plane in how we do our comparison (right)

- Our mapping mostly eliminates self-occlusion



SSAOQO Implementation

« Result is very noisy, so we repeatedly apply a
3x3 Gaussian blur filter




Cartoon Rendering Implementation

We calculate diffuse and specular terms of
Phong lighting, but determine intensity by:

- ssao * (diffuse + ambient1) + specular + ambient2

Lighting intensity discretized to five threshold
values:

- floor(intensity * 4.0) / 4.0

Outlines are drawn on top in separate shader,
by finding depth and normal discontinuities



Cartoon Rendering Implementation

» Counter-clockwise
from top-left:
- Phong only
- Phong and AO

- Threshold lighting
for toon shading

- Outlining added to
toon shading




Cartoon Outlining

» Take 8 sample points in square around pixel
« Sample normals and depth at point and at pixel

« Depth discontinuity: difference in depth is
greater than threshold

« Normal discontinuity: dot product between
normals is less than threshold

* If there is any discontinuity, color pixel black



Cartoon Outlining

» Depth finds silhouettes, outer edges, fails when
objects are too close

 Normals find sharp interior edges, plus outer
edges in some cases







Future Work

Better hardware (Pixel Shader 2.0 is limited to 768 instructions
per shader, 3.0 allows up to 65536)

Improvements to SSAO:

- Eliminate objects self-occluding
— Distance of occlusion not accounted for

- Reduce noise, possibly through more sampling and/or better
blurring (bilateral filtering?)

Anti-aliased outlines, and better outline detection
Apply other standard techniques: texture mapping, shadows

Experiment with other NPR techniques



Division of Labor

e Brett

- OpenGL rendering framework (nastiness)
- SSAO shader, other misc. shaders

- Test scene modeling

- Pretty pictures for paper

« Dan
- Mesh loader
- Qutlining shader and tweaks to SSAO and lighting shader

- Most of paper write up and presentation



